
IO Visor Project Overview

IO Visor: Introduction

2www.iovisor.org

Data Center Trends
Cloud-based Applications
Accelerating and driving the
IT industry to seek faster
service delivery and higher
efficiency

Virtualization Growth
Changes requirement for IO and
networking subsystems to support elastic
and dynamic applications and services

Data Center & Cloud
Transformation
IO and networking must be
open, flexible, distributed,
secure, and easy to operate

Infrastructure Transformation

www.iovisor.org

Data Center TrendsInfrastructure Transformation

Infrastructure Needs
§ Common way to develop and share new IO

functions
§ Programmable data planes abstractions &

development tools
§ Flexible and high performance technology

www.iovisor.org

Introducing IO Visor Project

5

Future	of	Linux	Kernel	IO	
for	software	defined	services

Led	by	initial	contributions	
from	PLUMgrid

(Upstreamed since	Kernel	3.16)		

Evolution	of	Kernel	
BPF	& eBPF

(Berkeley	Packet	Filter)	

“IO	Visor	will	work	closely	with	the	Linux	kernel	community	to	advance	universal	IO	extensibility	for	Linux.
This	collaboration	is	critically	important	as	virtualization	is	putting	more	demands	on	flexibility,	performance	
and	security.	

Open	source	software	and	collaborative	development	are	the	ingredients	for	addressing	massive	change	in	
any	industry.	IO	Visor	will	provide	the	essential	framework	for	this	work	on	Linux	virtualization	and	
networking.”

Jim	Zemlin,	Executive	Director,	The	Linux	Foundation.	

www.iovisor.org

6

Open Networking Ecosystem

www.iovisor.org

Founding Members

7www.iovisor.org

eBPF: Overview

8www.iovisor.org

A little bit of history: BPF

§ Introduced as Berkeley Packet Filters in kernel 2.1.75, in 1997
§ BPF is now referred to as Classic BPF or cBPF
§ Originally created as a way to analyze and filter network packets for

network monitoring purposes

§ BPF Goal: Accept packets you are interested in or discard them
§ How: Userspace attaches a filter to a socket
§ Example application: tcpdump/libpcap, wireshark, nmap, dhcp, arpd

9

1997

www.iovisor.org

A little bit of history: eBPF

§ e(xtended)BPF
§ Initial proposal was in 2013, by Alexei Starovoitov* and up streamed since

version 3.16
§ Referred to as the universal in-kernel virtual machine
§ Designed to give ability to create any in-kernel IO modules

§ eBPF Goal: Improve and extend existing BPF infrastructure
§ How: Programs in C and translated into eBPF instructions, loaded in kernel

and executed. In-kernel compiler: x86, ARM64, s390, powerpc*, MIPS*
§ Example Application: networking, tracing, security …

*https://lkml.org/lkml/2013/12/2/1066

10

2013

www.iovisor.org

eBPF: Loading New Modules

11

BPF program written in C

Translated into eBPF
instructions (LLVM)

Loaded in kernel and executed

Hooked at different levels of
Linux Networking Stack

HW/veth/tap

TAP/Raw

driver

netif_receive_skb()

TC / traffic control

Bridge hook

IP / routing

Socket (TCP/UDP)

BPF

BPF

BPF

www.iovisor.org

IO Visor: Overview

12www.iovisor.org

• A programmable data plane and development tools to simplify the creation
and sharing of dynamic “IO Modules”

• An open source project and a community of developers
• Enables a new way to Innovate, Develop and Share IO and Networking

functions

IO Visor Project: What?

Open Source & Community

Programmable Data Plane

1

2

www.iovisor.org

14

IO Visor Project, What is in it?

• IO Visor Project refers to a collection of
open source components

• IO Visor Engine is an abstraction of an IO
execution engine

• Multiple IO Visor Engines can exist,
Software or Hardware based

• IO Visor Engine has a set of IO Visor
Plugins to provide functionality to different
areas

www.iovisor.org

15

IO Visor Project, What is in it?

• A set of development tools, IO Visor Dev Tools

• A set of IO Visor Tools for management and
operations of the IO Visor Engine

• A set of Applications, Tools and open IO
Modules build on top of the IO Visor framework

• A set of possible use cases & applications like
Networking, Security, Tracing & others

www.iovisor.org

IO Visor Project – Enabling the Ecosystem

16

HW	Layer

Host	LayerODP DPDK OVS
Extension Xen Other Kernels

& Hypervisors

PPC Programmable
Switches SoC NPU Specialized NICx86 ARM

LLVM	&	GCC	compilers	&	IO	Visor	 Compiler	Backend

“Restricted	C”
Compiler	Front	End

IO	Visor	DPDL
Compiler	Front	End

Huawei	POF
Compiler	Front	End

P4
Compiler	Front	End

Other	Languages
Compiler	Front	End

IO	Visor	Runtime	Engine

Just	In	Time	
Compiler

Static	Execution	
Checker Dynamic	Loader Function	Chaining Tracing	/	Profiling	

Simple
ExecutesLinux Kernel

Execution	Layer

Compiler	Layer

Application	LayerNetworking Security Storage OtherAnalytics

www.iovisor.org

17

IO Visor Project Use Cases Example: Networking

§ IO Visor is used to build a fully
distributed virtual network across
multiple compute nodes

§ All data plane components are
inserted dynamically in the kernel

§ No usage of virtual/physical
appliances needed

§ Example here
https://github.com/iovisor/bcc/tree/m
aster/examples/distributed_bridge

Virtual/Physical
Appliances

Virtual
Network
Topology in
Kernel Space

www.iovisor.org

IO Visor Project Use Cases Example: Security

§ IO Visor provides a powerful platform for secure computing
§ BPF/eBPF can be used as the backend to enforce fencing of user space

components (applications) in the kernel
§ BPF program executed whenever an application is making a system call

into the kernel
§ Seccomp as an example

18www.iovisor.org

IO Visor Project Use Cases Example: Tracing

§ IO Visor is used to build a real-time,
distributed analytics platform that
monitors the health of a VXLAN
tunneling infrastructure

§ Data plane component is inserted
dynamically in the kernel and
leveraged by the application to
report information to the user

§ Example here
https://github.com/iovisor/bcc/tree/m
aster/examples/tunnel_monitor

19www.iovisor.org

IO Visor: Community & Ecosystem

20www.iovisor.org

Governance/Releases

§ Similar to other Linux Foundation Collaborative Projects
§ Governing Board to drive business decisions and leadership

§ E.g. Marketing, Legal, Finance/Budgeting, Certification &
Compliance programs

§ Technical Steering Committee drives the technical development and
engagement with other open source projects
§ E.g. oversees releases, coordinates sub-projects, sets

standards/requirements for release participation

21www.iovisor.org

IO Visor Membership Levels
Membership Level Annual Fee Board Seat TSC Seat Marketing

Committee
Notes

Platinum Flat fee: $50K Yes Yes Yes Linux Foundation Membership Required
at any level

Silver 1 Tiered, based
on org size1

1 per every 5 Silver
members, at least 1, up

to 3 total

No Yes
(non-voting)

Linux Foundation Membership Required
at any level

Participating
Academic Member

None No No No Requires Governing Board approval

Community
Participant
(non-Member)

None No No No Anyone can participate in technical
development community and earn a TSC
seat by becoming a maintainer

1Silver Annual Fee Scale
> 5,000 employees = $20K
1,000-4,999 employees = $15K
200 < 1,000 employees = $10K
< 200 employees = $5K

www.iovisor.org

Developer Resources

§ Code and documentation available at following links
§ main bpf man page: http://man7.org/linux/man-pages/man2/bpf.2.html
§ tc-bpf man page: http://man7.org/linux/man-pages/man8/tc-bpf.8.html
§ kernel code is available on kernel.org and you can find some examples in kernel

samples/bpf/ directory.
§ llvm component is on llvm.org
§ user space bits: https://github.com/iovisor which includes 'examples' directory,

readme, etc.

23www.iovisor.org

IO Visor Project Summary

24

§ Collaborative, open source project focused on IO and networking functions
§ Code already up streamed to Linux kernel
§ Hosted by the Linux Foundation with initial IP and code contribution by PLUMgrid
§ Formed by industry leaders across systems, software, and silicon

FLEXIBILITY
§ Programmable, extensible architecture
§ Dynamic IO modules that can be

loaded and unloaded in kernel at run
time without recompilation

§ Portable across any platform

PERFORMANCE
§ High performance, in-kernel
§ Distributed data plane and services

without bottlenecks or hairpinning
§ Scale-out forwarding without

compromise on functionality

www.iovisor.org

Q&A
www.iovisor.org

