
LINUX FOUNDATION COLLABORATIVE PROJECTS

IO Visor Use Cases: Networking Infrastructure

www.iovisor.org © 2015 IO Visor Project. All Rights Reserved Page 2

IO Visor Use Cases: Networking Infrastructure

Use Cases

IO function virtualization is now a necessity, not a luxury.
Building the right abstractions is the key enabler for this
transformation.

Virtual Network Infrastructure as a Necessity

Server virtualization was a catalyst for cloud deployments
and in the process, virtualization itself evolved. A key trans-
formation occurred when server functions (such as com-
pute, storage, and I/O) were decoupled from the underlying
physical hardware that these functions execute upon. This
decoupling created three fundamental value propositions
for data center operators:

•	 Maximizing utilization using on-demand resource
allocation.

•	 Introducing elasticity so that workloads/VMs can
be easily created, migrated, copied, and cloned.

•	 Fault isolation within VMs, which, in terms of cost
of recovery, bounds the risk of failure of a physical
server.

Today, network functions (such as switches, routers, fire-
walls/ACLs, and load balancers) are embedded into and
coupled with the physical appliances that provide these
functions. Decoupling the networking functions from the
underlay is a fundamental requirement to support agile,
on-demand, and elastic provisioning of network services in
multi-tenant cloud data centers. An overlay that provides
such decoupling offers the following unique value proposi-
tions:

•	 On-demand provisioning of physical network re-
sources to maximize network utilization.

•	 A system/IT administrator can define any virtual
network topology, which provides network func-
tions per tenant with traffic separation and then
this specific overlay topology be created, spawned,
managed or migrated, cloned, and copied at will.
This automation introduces significant operational
efficiencies and portability for data replication and
hybrid clouds.

•	 Containing risks such as misconfigurations, secu-
rity infringements, policy errors, etc. to an isolated
virtual network instance is a key benefit, because
failures are isolated within an assigned virtual
network resources and cannot propagate to other
parts of the physical network.

Challenges of Building Overlays

We are now seeing a transformation where the L2 network
functions are being decoupled from the underlying phys-
ical network hardware. Many different Distributed Virtual
Switches (DVSs) are now available to extend L2 functions
(such as switching and VLANs) beyond a single server.
This architecture needs a central controller that can encode
rules in each DVS so that packets can reach remote serv-
ers hosting other VMs of a tenant. Hence, the controller
and the DVS together form an L2 overlay.

While DVSs have been very useful in decoupling L2 func-
tions from the underlying physical network hardware, this
definition has unfortunately become synonymous with the
overall overlay concept when there are clearly many other
Network Functions (routing, firewalling, and load balanc-
ing, to name a few) that are fundamentally critical for any
overlay.

An agile and elastic data center should allow secure provi-
sioning of network functions on a per tenant basis, inter-
connection of these functions in arbitrary virtual topologies,
and application of network wide policies (such as security,
SLAs, and QoS) to a tenant’s virtual topologies.

This creates a potential roadblock. The underlying physical
network based protocols used by the network functions
vary across operators and vendors, and they evolve over
time. Thus, an effective overlay should allow fast and easy
support for all possible physical network wire protocols of
the past, the present, and the future.

If such a networking overlay were to be realized, its under-
lying technology would become a network hypervisor that
abstracts away the physical network details, while allowing
application evolution and agility with changing business
needs, network (topological or policy) state, and wire pro-
tocols. In fact, this VNI [overlay] can easily extend beyond
network functions to encompass storage protocols, thereby
becoming a true IO Visor.

IO Visor Project

IO Visor project provides an extensible data plane that
is programmable, elastic, and agile. With IO Visor up
streamed to the Linux kernel (as eBPF), users gain many
benefits and have a full set of new tools that enables in-
teroperability between manufacturers, portability to different

www.iovisor.org © 2015 IO Visor Project. All Rights Reserved Page 3

IO Visor Project

Open repo of
“IO Modules”

User space

Kernel space

eBPF Execution
Container

attachment points

IO Module helpers
(optional)

IO context

IO Module
(dynamically loaded)

µController

attachment points

Figure 1: eBPF framework for networking

hardware platforms, and widely available talent for software
development and operations. Moreover, the Linux kernel
can be used directly without adding any vendor-specific
library or API framework on top of it, guaranteeing that this
architecture is not limited to work with any specific vendor’s
hardware, or bound by the capabilities that a vendor’s API
may support.

The Linux kernel has traditionally supported several frame-
works providing pieces of what could be turned into fully
capable “networking functions”. There are low-level filtering
tools available (perf, ftrace, stap, ktap), traffic analyzers
and monitors (tcpdump, iptraf), tools for monitoring the net-
working stack at different layers (ss, iptraf, netstat, nicstat,
ip), tight control of the network interfaces and the link layer
(ethtool, lldptool) and powerful hierarchical queuing and
prioritization mechanisms (qdisc).

These tools offer access to different pieces of information
about the running networking subsystem. However, in order

to build a fully capable networking data plane, the Linux
kernel should have the ability to execute atomic networking
functions (such as switching, routing, firewalling, etc) and
serialize them to form a complex data plane composed of
several of those networking functions. This would enable
building these atomic networking functions as simple
programs, and serializing them to build a full networking
topology (the full data plane of the service) in kernel space.

As eBPF, IO Visor provides the in-kernel data plane func-
tionality, designed and optimized for cloud infrastructure to
run a dynamic virtual network infrastructure that meets the
following requirements:

1.	 Self-service provisioning, fault-resilient network pro-
visioning on a per-tenant basis.

2.	 On-demand provisioning, configuration, and reconfig-
uration of arbitrary network topologies and policies.

3.	 Agile support of new physical network protocols and
network functions, without vendor lock-in.

Encap/Tunneling
Switching
Routing
Firewall
Qos/ sched.

IN-KERNEL VNFs

www.iovisor.org © 2015 IO Visor Project. All Rights Reserved Page 4

Self-service

It is important that an IO Visor provides network function programmers with data plane programming SDKs and compiler
tool chains for all its supported platforms. This development workflow allows operators to introduce any new network
function and wire protocol in their networks, without getting locked into a single vendor. An additional advantage of the
IO Visor technology is that the compiler hides data plane specifics from the developer, who can write a network function’s
data plane using the provided SDK and then recompile it for any supported platform. In other words, the IO Visor
technology naturally becomes a Network-as-a-Platform (NaaP), providing the user with a development environment to
define new network functions and their corresponding data planes.

Summary

IO Visor technology provides all the features of data center automation and virtualization discussed in this whitepaper.

You can use the IO Visor technology to implement isolated virtual network instances for safe isolation of multi-tenant
network topologies. Tenants can create, clone, and migrate these virtual network instances on demand. Further you can
provide a rich set of virtual network functions (such as routers, switches, and security) and services (such as NAT and
DHCP).

In short, IO Visor delivers a true Network-as-a-Platform technology to automate and manage modern cloud enabled data
center networks.

Figure 2: IO Visor SDK-driven development workflow

Development Environment

Deploy
Runtime

Data plane
Definition

SDK/Compiler

Extensible
Data plane

Network
Function

Configure
Data plane

contact-us@iovisor.org
events@iovisor.org
www.iovisor.org

Contact Us

